skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Devadas, Srinivas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Free, publicly-accessible full text available November 2, 2025
  3. Fully Homomorphic Encryption (FHE) enables computing on encrypted data, letting clients securely offload computation to untrusted servers. While enticing, FHE has two key challenges that limit its applicability: it has high performance overheads (10,000× over unencrypted computation) and it is extremely hard to program. Recent hardware accelerators and algorithmic improvements have reduced FHE’s overheads and enabled large applications to run under FHE. These large applications exacerbate FHE’s programmability challenges. Writing FHE programs directly is hard because FHE schemes expose a restrictive, low-level interface that prevents abstraction and composition. Specifically, FHE requires packing encrypted data into large vectors (tens of thousands of elements long), FHE provides limited operations on these vectors, and values have noise that grows with each operation, which creates unintuitive performance tradeoffs. As a result, translating large applications, like neural networks, into efficient FHE circuits takes substantial tedious work. We address FHE’s programmability challenges with the Fhelipe FHE compiler. Fhelipe exposes a simple, numpy-styletensorprogramming interface, and compiles high-level tensor programs into efficient FHE circuits. Fhelipe’s key contribution isautomatic data packing, which chooses data layouts for tensors and packs them into ciphertexts to maximize performance. Our novel framework considers a wide range of layouts and optimizes them analytically. This lets compile large FHE programs efficiently, unlike prior FHE compilers, which either use inefficient layouts or do not scale beyond tiny programs. We evaluate on both a state-of-the-art FHE accelerator and a CPU. is the first compiler that matches or exceeds the performance of large hand-optimized FHE applications, like deep neural networks, and outperforms a state-of-the-art FHE compiler by gmean 18.5. At the same time, dramatically simplifies programming, reducing code size by 10–48. 
    more » « less
  4. Hypervisors have played a critical role in cloud security, but they introduce a large trusted computing base (TCB) and incur a heavy performance tax. As of late, hypervisor offloading has become an emerging trend, where privileged functions are sunk into specially-designed hardware devices (e.g., Amazon’s Nitro, AMD’s Pensando) for better security with closer-to-baremetal performance. In light of this trend, this project rearchitects a classic security task that is often relegated to the hypervisor, memory introspection, while only using widely-available devices. Remote direct memory introspection (RDMI) couples two types of commodity programmable devices in a novel defense platform. It uses RDMA NICs for efficient memory access and programmable network devices for efficient computation, both operating at ASIC speeds. RDMI also provides a declarative language for users to articulate the introspection task, and its compiler automatically lowers the task to the hardware substrate for execution. Our evaluation shows that RDMI can protect baremetal machines without requiring a hypervisor, introspecting kernel state and detecting rootkits at high frequency and zero CPU overhead. 
    more » « less
  5. Hypervisors have played a critical role in cloud security, but they introduce a large trusted computing base (TCB) and incur a heavy performance tax. As of late, hypervisor of- floading has become an emerging trend, where privileged functions are sunk into specially-designed hardware devices (e.g., Amazon’s Nitro, AMD’s Pensando) for better security with closer-to-baremetal performance. In light of this trend, this project rearchitects a classic security task that is often relegated to the hypervisor, mem- ory introspection, while only using widely-available devices. Remote direct memory introspection (RDMI) couples two types of commodity programmable devices in a novel defense platform. It uses RDMA NICs for efficient memory access and programmable network devices for efficient computa- tion, both operating at ASIC speeds. RDMI also provides a declarative language for users to articulate the introspection task, and its compiler automatically lowers the task to the hardware substrate for execution. Our evaluation shows that RDMI can protect baremetal machines without requiring a hypervisor, introspecting kernel state and detecting rootkits at high frequency and zero CPU overhead. 
    more » « less
  6. Hypervisors have played a critical role in cloud security, but they introduce a large trusted computing base (TCB) and incur a heavy performance tax. As of late, hypervisor offloading has become an emerging trend, where privileged functions are sunk into specially-designed hardware devices (e.g., Amazon’s Nitro, AMD’s Pensando) for better security with closer-to-baremetal performance. In light of this trend, this project rearchitects a classic security task that is often relegated to the hypervisor, memory introspection, while only using widely-available devices. Remote direct memory introspection (RDMI) couples two types of commodity programmable devices in a novel defense platform. It uses RDMA NICs for efficient memory access and programmable network devices for efficient computation, both operating at ASIC speeds. RDMI also provides a declarative language for users to articulate the introspection task, and its compiler automatically lowers the task to the hardware substrate for execution. Our evaluation shows that RDMI can protect baremetal machines without requiring a hypervisor, introspecting kernel state and detecting rootkits at high frequency and zero CPU overhead. 
    more » « less